GCF AND LCM

- Greatest Common Factor (GCF): the largest number that will go in two or more given \#s Ex. 12, 24, 60 GCF = 12
- Least Common Multiple (LCM): the smallest multiple that two or more numbers have in common Ex. $4,6,16=48$. LCM is also used in finding the least common denominator with fractions.

PRIME \& COMPOSITE

 NUMBERS- Prime: one set of factors, 2 is the only even prime \#
- Composite: more than 2 factors

EXPONENTS

- Cubed: third power
- Squared: second power
- $5^{4}=5 \times 5 \times 5 \times 5$

PROPERTIES OF ADDITION AND MULTIPLICATION

- Distributive Property:
"Distribute the papers" \rightarrow $3(x-4)=-18$
$3 * x+3 *-4=-18$
- Associative Property:
"Parentheses"

$$
\begin{array}{ll}
\circ & 2(3 y)=(2 x 3) y \\
\circ & 2+(4+6)=(2+4)+6
\end{array}
$$

- Commutative Property:
"Mirrors" $\rightarrow 5 \times 4 \times 3=$
$3 \times 4 \times 5$
- Additive Identity

Property:
$4+0=4$

- Multiplicative Identity Property: 9x1 =9
- Zero Property: 5 x $0=0$

SUBSTITUTION

- Put a number in place of a letter
- Ex. If $a=2 b=5$ and $\mathrm{c}=1$ what does $\mathrm{ab}-\mathrm{c}$ equal?

MEASUREMENT

- Area of squares/rectangles: Lx W
- Area of triangle:
$1 / 2$ bh or bh $\div 2$
- Area of trapezoid: (base1 + base2) x height $\div 2$
- Area of Parallelogram: bxh
- Perimeter: add all of the sides together
- Volume of Rectangular Prism: L x W x H
- Surface Area: find the area of each face then add all them up

$6^{\text {TH }}$ GRADE MATH EOG

SOLVING TWO STEP EQUATIONS

- Do the opposite to reverse the operation and work backwards with order of operations to get x by itself and what you do to one side you have to do to the other
- Example

$$
\begin{array}{r}
2 x+3=15 \\
-3=-3 \\
\frac{2 x}{2}=\frac{12}{2} \\
x=6
\end{array}
$$

ABSOLUTE VALUE

$$
|6|=6 \quad|-4|=4
$$

$-|5|=-5 \quad-|-2|=-2$

DOT PLOTS

- Very similar to a bar graph but instead of bars a dot is placed above the category for each time it appears

ORDER OF OPERATIONS

Please: Parentheses
Excuse: Exponents
My: Multiplication
Dear: Division
Aunt: Addition
Sally: Subtraction

- Treat multiplication and division as equals
- Treat addition and subtraction as equals
- Work left to right if you've got signs that are treated equally (Ex. If you got before + do - first... L \rightarrow R)

COORDINATE GRID

- Coordinates: (x,y)
- Origin: $(0,0)$

TEST STRATEGIES

- Guess and Test
- Make a table/chart/graph
- Make a diagram/picture
- Make and organized list
- Work backwards
- Work a simpler problem
- Find a pattern

TEST TIPS

- Get plenty of rest the night before
- Eat a good breakfast the morning of the test
- RELAX!!
- As soon as you're allowed to start, quickly write down helpful formulas and notes on your scrap paper so you don't forget during the test
- Use process of elimination
- You can write in your test book so WRITE ALL OVER IT. Cross out wrong answers, /underline/circle important words.
- Circle your correct answer in the test book so if you get off on your bubble sheet you can easily go back and fix things.
- Pace yourself and don't rush through the test because you could make careless mistakes.
- BELIEVE IN YOURSELF!!

FRACTIONS

- Mixed \# to Improper fraction: multiply denominator by whole \# then add the numerator
- Improper fraction to Mixed \#: figure out how many times denominator goes into numerator and this is the whole \#, remainder is numerator, denominator stays same
- Multiplying Fractions: Turn mixed \#s into improper fractions and multiply across, then simplify
$21 / 3 x^{3 / 4} \rightarrow 7 / 2 \times 3 / 4=21 / 8=25 / 8$
- Dividing Fractions: Dividing fractions is easy as pie, flip the last fraction and multiply $5 / 7 \div 13 / 5 \rightarrow 5 / 7 \div 8 / 5 \rightarrow 5 / 7 \times 5 / 8=25 / 56$
- If you are multiplying or dividing by a whole \# you put it over $1 \ldots$
Ex: $4 \times 3 / 5=4 / 1 \times 3 / 5=12 / 5=22 / 5$

BOX PLOTS

- Minimum: first dot from the left, it is the smallest \#
- Maximum: last dot from the left, it is the largest \#
- Median/ Second Quartile: middle line inside the box
- Lower/First Quartile: median of lower $1 / 2$ of data, left side of box
- Upper/Third Quartile: median of upper $1 / 2$ of data, right side of box
- Interquartile Range: Q3 minus Q1
- 25% of data is between each part of the box plot

RATIOS, FRACTIONS, \& DECIMALS

- Ratio: a way to represent a fraction using :
- Fraction: part over whole
- Decimal: another way to represent a fraction. Top \# \div bottom \# = decimal
- Example of $3 / 4$:
- Ratio- 3:4
- Fraction- $3 / 4$
- Decimal- $3 \div 4=\mathbf{0 . 7 5}$
- Decimal to Fraction: take the number after the decimal and put it over the place value (Ex. $0.625 \rightarrow 625 / 1000$ because the 5 is in the thousandths place... now simplify... simplifies to 5/8)
- Bar notation: line that shows a decimal repeats

HISTOGRAM

- Type of bar graph that uses intervals
- Intervals cannot have the same \# in two categories... Ex. 1-5, 6-10 works but 15, 5-10 doesn't work because 5 is in both intervals
- You must have the same numbers of \#s in each interval... Ex. 1-3, 4-6 works because each interval has 3 \#s but 1-2, 3-6 doesn't work because only 2 \#s are included in the interval 1-2 (the \#s 1 and 2) and in the interval 3-6 there are 4 \#s ($3,4,5$, and 6)

DECIMALS

- Adding and Subtracting: line the decimals up and add/subtract like a regular \# and bring the decimal straight down
- Multiplying:

Move the decimal left the number of of numbers following the \#s in the ?

$$
\begin{array}{r}
54.78 \\
\times \quad 1.2 \\
\hline 10956 \\
+54780 \\
\hline 55.736
\end{array}
$$

- Dividing:

If you are doing DECIMAL \div WHOLE \# do not move the decimal, but if you \div by a decimal you will have to move the decimal

$$
15.6 \div 0.02 \rightarrow 1560 \div 2
$$

Moved the decimal 2 times to the right to get rid of the decimal in 0.02 so had to move the decimal to the right 2 times in 15.6

- Place Value: after the decimal the place values from closest to the decimal and moving right are:
- tenths hundredths thousandths ten thousandths and so on

MEASURES OF CENTER

- Mean: the average for a set of data... add all the data up and divide by how many \#s you added together
- Median: the middle number when you arrange the data in order.. If two \#s split the middle then find the mean of the 2 middle \#s
- Mode: the \# that occurs the most, you can have more than one mode, if there isn't one write none
- Range: the difference between the highest and lowest \#s

PERCENTS

If you have all the percents (whole) it will be $\mathbf{1 0 0 \%}$.

- Decimal to \%: decimal * 100 (move deci. 2 to \rightarrow)
- \% to Decimal: \% \div by 100 (move deci. 2 to \leftarrow)
- Fraction to \%: top \# bottom \# *100
- \% to Fraction: turn \% to decimal then decimal to fraction (see ratio fraction decimal box)

DIVISIBILITY RULES

- $\underline{\mathbf{0}:}$ numbers can't be \div by 0 but you can do $0 \div$ \#
- 1: any \# $\div 1$ is that \#
- 2: if it ends in an even \#
- 3: add up the digits in the \#, if the sum is a multiple of 3 then the bigger \# can be \div by 3
- 4: look at the last 2 digits in the \#, if it ends in 00 or that \# can be \div by 4 then the whole \# can be \div by 4
- 5: ends in 5 or 0
- 6: must be divisible by 2 and 3
- 7 and 8: no rule
- 9: add the digits in the \# up and if the sum can by \div by 9 then the bigger \# can be \div by 9
- 10: ends in 0

