Student:

Expressions: Equations

Class: Date:

Study Guide

2

1. What is the value of $(0.3)^4$?

$$\frac{.3}{.3} \frac{.09}{.027} \frac{.027}{0.081}$$

2. Which number is equivalent to 8^3 ?

3. Which value is equivalent to $6^2 + 4^2 + 2^4$?

$$6^{2} + 4^{2} + 2^{4}$$
 $36 + 16 + 16 = 68$

4. Which value of the expression $\left(a - \frac{5}{4}\right)$ will make the equation below true?

$$a \times \left(a - \frac{5}{4}\right) = a$$

A
$$\frac{9}{4}$$
B. $\frac{4}{5}$ $a \times |= 2$
C. 0

I substitute each answer choice in place of (a- = +) to Find the one

that equals a

5. What is another way to write $3 \times (4+5) = 27$?

A
$$(9 \div 3) + 5 = 27$$

(B.)
$$(3 \times 4) + (3 \times 5) = 27$$

B.
$$(3 \times 4) + (3 \times 5) = 27$$

C. $(9 \times 5) + (4 \times 3) = 27$

D.
$$(3+5)+(4+5)=27$$

Distributive property.

Distribute the #

Outside the parentheses

to both numbers inside by multiplication. 3x(4+5)=27

(3x4)+(3x5)=27

	1		
6. V	Vhich statement	is true for all v	alues of <i>y</i>
	36 × $y = y \div 36$ 37 $y + 14 = 14 + y$ 38 $y + 14 = 14 + y$ 39 $y + 16 = 16 - y$	-7 Co	mmutz Ladd Chan
T b	at a movie theater the expression by ags of popcorn $6.50x + 5.50x - 1.50x + $	elow represent and <i>x</i> large sod	s the tota
	Which expression		to the one
P	6.50 <i>x</i>		
E	3.50x		
Ç	2.50 <i>x</i> 0. 1.50 <i>x</i>		
8. V	which of the follo	owing is equiva	lent to the
Ĝ	\sum_{9x}^{8x}	Com	bine

commutative proof addition st	operty		
of addition st	ates that	lem does not c	hange
commutative property of addition structure to changing an	addition Prop	the answer	

bag of popcorn and a large soda for a special price. I amount, in dollars, a customer will save if he buys x special price.

	0x + 5.50x - 7.50x ich expression is equivalent to the one shown above?	+ 4.50	+10.00
Α	6.50x	+550	7750
B.	3.50x	+10.00	+2,50
(c.)	2.50x		
	4.50		

e expression x + 3x + 5x for all values of x?

$ \stackrel{A}{\bigoplus} {}^{8x}_{9x} $	Combine Like terms	
C. $8x^3$	1x + 3x + 5x = 9	K
D. $9x^3$	17.27.10	•

9. Which expression is equivalent to 5(n-9)?

$$\begin{array}{lll}
\overrightarrow{D} & 5n-45 \\
B. & 5n+45 \\
C. & 5n-9 \\
D. & 5n+9
\end{array}$$

$$\begin{array}{lll}
\overrightarrow{D} & \text{Stributive Property} \\
\overrightarrow{S} & (n-9) = 5n-45
\end{array}$$

10. What is the value of t in 3.

Wilat is the val	$\frac{1}{5}t = 6$
A $3\frac{3}{5}$	
B. $5\frac{2}{5}$	To so
© ₁₀	Comple

one step equation lve a one-step equation to the inverse (opposite) operation

Means 3 times t. The opposite of multiplying by 3 is dividing by 3. To get the answer divide 6 by 3.

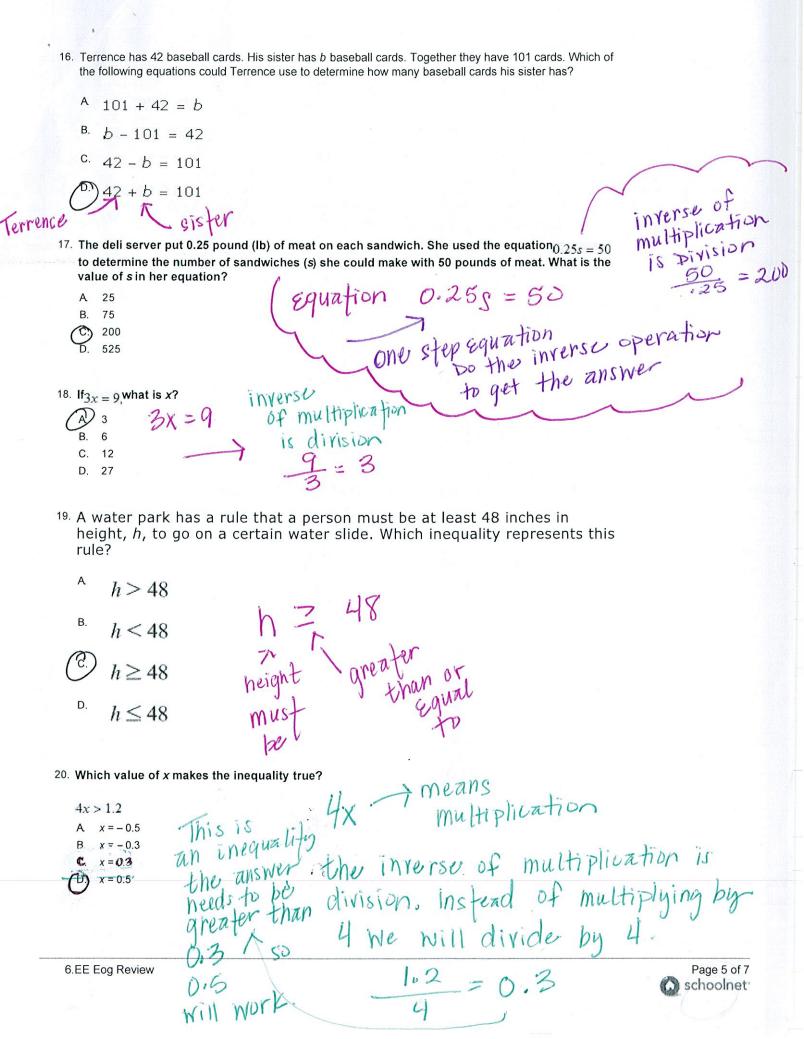
6.EE Eog Review

- 11. If 8x = 800, what is the value of x?

 A 8

 B 8x = 800 inverse operation is divisor

 B 10


 B 00 8 = 100

- c. 64
- 100
- 12. When Coach Orozco opened the badminton sets he purchased, he found he had less than 48 badminton racquets. Each badminton set had 4 racquets. In the inequality below, b represents the number of badminton sets he could have purchased.
 - 4b < 48

Which could be the number of badminton sets Coach Orozco purchased?

- 46 means multiply
- 44
- Which answer choice multiplied by 4 gires you less than 48 4(11) 248
- 47
- 13. Erica bough 3 DVDs and 2 video games at a store. If depresents the cost of each DVD and (v) represents the cost of each video game, which expression represents the total cost of Erica's purchase before sales tax?
 - 5dv
 - B. 2d + 3v
- 3d, +2V

- 14. The cafeteria has 16 tables and each table has 6 chairs. Which equation can be used to show how many students can sit and eat lunch at the same time?
 - A 16 6 = c
- tables chairs
- 15 Mason owns 5 times as many CDs as Bryan. If Bryan owns 14 CDs, which equation can be used to find the number of CDs that Mason owns?
 - A m = 14 + 5
- Mason owns 5 times what Eryan has
- Bryan has 14
- So Masom = 14 x 5

21. Which graph represents the solution set for the inequality 7.5 < x? means you also have to flip the sign to the rig 22. Jim has a roll of 20 quarters. He uses 5 quarters to buy a snack from a vending machine. He uses 4 more quarters to buy a drink from another machine. Which equation can be used to figure out how many quarters (Q) Jim has left? $0 = 20 - 5 \div 4$ Shade Q = 20 + 5 + 4tarted With For snach 23. Which problem situation could be used to solve the open sentence below? A Darell has \$12.00 more than Blanca. If Blanca has p dollars, how much does Darell have? Deena earns \$12.00 each time she cleans the garage. If p is the total amount of money that she earned last year by cleaning the garage, how many times did she clean the garage? Amiee earns \$12.00 on each box of paper she sells. If p is the number of boxes of paper that she sold, how much did she earn in all? Tanisha had \$12.00. She spent p dollars on a notebook. How much money does Tanisha have left?

^{24.} The table below shows Abigail's total savings, y, based on the number of months she has been saving, x.

Abigail's Savings

Month	Total Savings
(x)	(y)
1	\$225
2	\$450
3	\$675
4	\$900

Which equation would determine Abigail's total savings after xweeks?

A
$$y = 450x$$

$$y = 225x$$

c.
$$y = x + 225$$

D.
$$y = 2x + 450$$