Math -2 Unit \# 3 quadratic equation
How to solve quadratic equation
There are many ways to solve quadratic equations, and in this unit we will study four methods:

A- Method \#1 solving quadratic equation by Factoring.

Follow the following steps:
1- Write the quadratic equation in Slandered form $a X^{2}+b X+C=0$.
2- Open two () () that equal zero, then factor a X^{2} to $\underline{a} X$ and X or $\underline{a}_{1} X$ and $a_{2} X$ where . $\mathrm{a}_{1} \mathrm{X}$ times $\mathrm{a}_{2} \mathrm{X}=\mathrm{aX}$.
3- Factor C to C_{1} and C_{2} where C_{1} times $C_{2}=C$, but be careful for choosing C_{1} and C_{2} because when you add C_{1} and C_{2} the result must be equal to b (the factor of X). $a X^{2}+b X+C=0$.
$\left(a X+/-C_{1}\right)\left(X+/-C_{2}\right)=0$ plus or minus depends on the sign of b and c

B- Method \#2 solving quadratic equation by completing the square.(If a=1)

This method is use when it is hard to factor C .
Follow the following steps:
1- Move C to the other side of equal sign ($=$) and flip it sign, so -C become +C and +C become-C.
2- Find your square value $\square=(b / 2)^{2}$ and add it to both sides of equation.
3- Factor the equation using method \# 1 above (Factoring)
$a X^{2}+b X+C=0$.
$a x^{2}+b X=-C$
$a X^{2}+b X+(b / 2)^{2}=--C+(b / 2)^{2}$ then Factor.

C-Method \#3 using quadratic formula.

This method can solve any quadratic equation. And the formula is $X=\frac{-b \pm \sqrt{\boldsymbol{b}^{2}-4 a \boldsymbol{a}}}{2 \boldsymbol{a}}$

D- Method \# 4 using graphs.

1-With this method you should construct a table and assign some values for X around the origin $(0,0)$ so $X=0,-1,-2,2,4 \ldots$. etc. and substitute X value in the equation, then find Y values
2- graph X and Y you should have parabola shape, then find zeros (X-intercepts) from the graph.
3-If the vertex Max or min or above or below X - axis, that means you have two real solutions. If the vertex is the origin $(0,0)$, that means you have one real solution. IF the vertex is $(0,+Y)$ up or ($0,-Y$) down, that means you have two non-real solutions.

